THE CHINESE UNIVERSITY OF HONG KONG
 MATH3270B
 HOMEWORK4 SOLUTION

Question 1:

(1) Since we have

$$
\begin{align*}
\lambda I-A & =\left(\begin{array}{ccc}
\lambda-1 & -1 & -1 \\
-2 & \lambda-1 & 1 \\
3 & -2 & \lambda-4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -1 & \lambda-1 \\
-1 & \lambda-1 & -2 \\
-\lambda+4 & -2 & 3
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
1 & -1 & \lambda-1 \\
0 & \lambda-2 & \lambda-3 \\
0 & -\lambda+2 & 3+(\lambda-1)(\lambda-4)
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & (\lambda-2)^{3}
\end{array}\right) \tag{1}
\end{align*}
$$

Hence, the Jordan form of A is

$$
\left(\begin{array}{lll}
2 & 1 & 0 \tag{2}\\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(2) Since the Jordan form of A is $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$. We have that $\lambda=2$ is the triple root of A , hence, we substitute $\lambda=2$ into the matrix $\lambda I-A$ and deduce that the corresponding eigenvector is $\xi=(0,1,-1)^{T}$. Therefore, first solution of that system is $x_{1}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right) e^{2 t}$. Next, we assume that the second solution having the form $x_{2}=\xi t e^{2 t}+\eta e^{2 t}$, where ξ and η satisfy:

$$
\left\{\begin{array}{l}
(A-2 I) \xi=0 \tag{3}\\
(A-2 I) \eta=\xi
\end{array}\right.
$$

We solve (3) and deduce that $\xi=(0,1,-1)^{T}, \eta=(1,1,0)^{T}$. Hence, the second solution is $x_{2}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right) t e^{2 t}+\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) e^{2 t}$. Similarly, we assume the third sol having the form $x_{3}=$ $\xi \frac{t^{2}}{2} e^{2 t}+\eta t e^{2 t}+\zeta e^{2 t}$, where ξ, η, ζ satisfy:

$$
\left\{\begin{array}{l}
(A-2 I) \xi=0 \tag{4}\\
(A-2 I) \eta=\xi \\
(A-2 I) \zeta=\eta
\end{array}\right.
$$

We solve the (4) and deduce that $\xi=(0,1,-1)^{T}, \eta=(1,1,0)^{T}, \zeta=(2,0,3)$. Therefore, the general solution of the system is

$$
x=\varphi(t) x_{0}=e^{2 t}\left(\begin{array}{ccc}
0 & 1 & t+2 \tag{5}\\
1 & t+1 & \frac{t^{2}}{2}+t \\
-1 & -t & -\frac{t^{2}}{2}+3
\end{array}\right) x_{0}
$$

Question 2:

(1) Similarly, we have:

$$
\begin{align*}
& \lambda I-A=\left(\begin{array}{ccc}
\lambda-5 & 3 & 2 \\
-8 & \lambda+5 & 4 \\
4 & -3 & \lambda-3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 3 & \lambda-5 \\
4 & \lambda+5 & -8 \\
\lambda-3 & -3 & 4
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
2 & 3 & \lambda-5 \\
0 & \lambda-1 & -2 \lambda+2 \\
0 & -3 \lambda+3 & \lambda^{2}+8 \lambda-7
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda-1 & 0 \\
0 & 0 & (\lambda-1)^{2}
\end{array}\right) \tag{6}
\end{align*}
$$

Hence, the Jordan form of A is:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \tag{7}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(2) Similarly, we substitute $\lambda=1$ into A and deduce that the eigenvectors are $\xi_{1}=(1,0,2)^{T}$, $\xi_{2}=(0,2,-3)^{T}$. Hence, we get two linearly independent solution $x_{1}=\xi_{1} e^{t}, x_{2}=\xi_{2} e^{t}$. And we assume that the third solution having the form $x_{3}=\xi t e^{t}+\eta e^{t}$ and ξ, η satisfy

$$
\left\{\begin{array}{l}
(A-2 I) \xi=0 \tag{8}\\
(A-2 I) \eta=\xi
\end{array}\right.
$$

We solve (8) and deduce that $\xi=(2,4,-2)^{T}, \eta=(0,0,1)^{T}$. Hence the general solution of system is

$$
x=\varphi(t) x_{0}=e^{t}\left(\begin{array}{ccc}
1 & 0 & 2 t \tag{9}\\
0 & 2 & 4 t \\
2 & -3 & -2 t+1
\end{array}\right) x_{0}
$$

Question 3:

(1) It's easy to deduce that $A=\left(\begin{array}{cc}0 & 1 \\ 0 & \omega^{2}\end{array}\right)$. And we find that: $A^{2}=\left(\begin{array}{cc}0 & -\omega^{2} \\ 0 & \omega^{4}\end{array}\right)$, $A^{3}=$
$\left(\begin{array}{cc}0 & \omega^{4} \\ 0 & -\omega^{6}\end{array}\right)$. Hence, we deduce that:

$$
A^{n}=\left(\begin{array}{cc}
0 & \left(-\omega^{2}\right)^{n-1} \\
0 & \left(-\omega^{2}\right)^{n}
\end{array}\right)
$$

Next, since $\sum_{n=1}^{+\infty} \frac{\left(-\omega^{2}\right)^{n-1} t^{n}}{n!}=\frac{e^{-\omega^{2} t}-1}{\omega^{2}}$, and $\sum_{n=1}^{+\infty} \frac{\left(-\omega^{2}\right)^{n} t^{n}}{n!}=e^{-\omega^{2} t}-1$, we deduce that:

$$
e^{A t}=I+\sum_{n=1}^{+\infty} \frac{(A t)^{n}}{n!}=I+\left(\begin{array}{cc}
0 & \frac{e^{-\omega^{2} t}-1}{\omega^{2}} \tag{10}\\
0 & e^{-\omega^{2} t}-1
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{e^{-\omega^{2} t}-1}{\omega^{2}} \\
0 & e^{-\omega^{2} t}
\end{array}\right)
$$

Now, the initial data is $x_{0}=\binom{y_{0}}{y_{1}}$ We deduce finally that the sol is $x=e^{A t} x_{0}=\binom{y_{0}+y_{1} \frac{e^{-\omega^{2} t}-1}{\omega^{2}}}{y_{1}\left(e^{-\omega^{2} t}-1\right)}$.
(2) First we consider the corresponding homogeneous equation. Here $A=\left(\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right)$. It's easy to deduce that the eigenvalues are $\lambda_{1}=1, \lambda_{2}=-1$, and the corresponding eigenvectors are $\xi_{1}=\binom{-3}{1}, \xi_{2}=\binom{1}{-1}$. Hence, the general sol of homogeneous equation is $x=$ $C_{1}\binom{-3}{1} e^{t}+C_{2}\binom{1}{-1} e^{-t}$. Then we assume that the particular of the inhomogeneous equation is $x^{*}=\varphi(t) u(t)$ where $\varphi(t)$ is the fundamental matrices and $\varphi(t)=\left(\begin{array}{cc}-3 e^{t} & e^{-t} \\ e^{t} & -e^{-t}\end{array}\right)$. By the method of variation of parameters, $u(t)$ satisfies the equation: $\varphi(t) u^{\prime}(t)=g(t)$,i.e.

$$
\left(\begin{array}{cc}
-3 e^{t} & e^{-t} \tag{11}\\
e^{t} & -e^{-t}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{e^{t}}{t}
$$

We write (11) in scalar form,

$$
\left\{\begin{array}{c}
-3 e^{t} u_{1}^{\prime}+e^{-t} u_{2}^{\prime}=e^{t} \tag{12}\\
e^{t} u_{1}^{\prime}-e^{-t} u_{2}^{\prime}=t
\end{array}\right.
$$

that is,

$$
\left\{\begin{array}{c}
u_{1}^{\prime}=-\frac{1}{2}-\frac{t}{2 e^{t}} \tag{13}\\
u_{2}^{\prime}=\frac{1}{2}\left(-3 t e^{t}-e^{2 t}\right)
\end{array}\right.
$$

We solve the (13) and deduce that:

$$
\left\{\begin{array}{l}
u_{1}=-\frac{1}{2} t+\frac{1}{2}(t+1) e^{-t}+c_{1} \tag{14}\\
u_{2}=-\frac{1}{4} e^{2 t}-\frac{3}{2}\left(t e^{t}-e^{t}\right)+c_{2}
\end{array}\right.
$$

Hence that general sol is

$$
\begin{array}{r}
x=\varphi(t) u(t)=\left(\begin{array}{cc}
-3 e^{t} & e^{-t} \\
e^{t} & -e^{-t}
\end{array}\right)\binom{-\frac{1}{2} t+\frac{1}{2}(t+1) e^{-t}+c_{1}}{-\frac{1}{4} e^{2 t}-\frac{3}{2}\left(t e^{t}-e^{t}\right)+c_{2}} \tag{15}\\
=c_{1}\binom{-3}{1} e^{t}+c_{2}\binom{1}{-1} e^{-t}+\binom{-\frac{1}{4}}{-\frac{1}{4}} e^{t}+\binom{\frac{3}{2}}{-\frac{1}{2}} t e^{t}+\binom{-3}{2} t+\binom{0}{-1}
\end{array}
$$

Question 4:

I think the problem is obvious. Since for equation (1), we have Abel's formula: $W\left(y_{1}, y_{2}\right)=$ $C e^{-\int p(t) d t}$. For the system (2), we also have the Abel's formula $\hat{W}\left(\phi_{1}, \phi_{2}\right)=\hat{(C)} e^{\int \operatorname{tr}(A) d t}=$ $\hat{C} e^{-\int p(t) d t}$. Hence, the conclusion follows. $(\operatorname{tr}(\mathrm{A})$ means the trace of A.)

